有以下四个命题:(1)2n>2n+1(n≥3);(2)2+4+6+…+2n=n2+n+2(n≥1);(3)凸n边形内角和为f(n)=(n-1)π(n≥3);(4

有以下四个命题:(1)2n>2n+1(n≥3);(2)2+4+6+…+2n=n2+n+2(n≥1);(3)凸n边形内角和为f(n)=(n-1)π(n≥3);(4

题型:不详难度:来源:
有以下四个命题:
(1)2n>2n+1(n≥3);
(2)2+4+6+…+2n=n2+n+2(n≥1);
(3)凸n边形内角和为f(n)=(n-1)π(n≥3);
(4)凸n边形对角线条数f(n)=
n(n-2)
2
(n≥4).
其中满足“假设n=k(k∈N,k≥n0).时命题成立,则当n=k+1时命题也成立.”但不满足“当n=n0(n0是题中给定的n的初始值)时命题成立”的命题序号是______.
答案
对于命题(1)2n>2n+1(n≥3);当n=3的时候有8>7,故当n等于给定的初始值成立,所以不满足条件.
对于命题(2)2+4+6+…+2n=n2+n+2(n≥1);假设n=k时命题成立,即2+4+6+…+2k=k2+k+2,当n=k+1时有2+4+6+…+2k+2(k+1)=k2+k+2+2(k+1)=k2+2k+1+k+3=(k+1)2+(k+1)+2.故对n=k+1时命题也成立.对于初始值n=1时有4≠4+2+2,不成立.所以满足条件.
对于命题(3)凸n边形内角和为f(n)=(n-1)π(n≥3);假设n=k时命题成立,即f(k)=(k-1)π,当n=k+1时有f(k+1)=
f(k)+π=kπ故对n=k+1时命题也成立,对于初始值n=3内角和为π,不成立.故满足条件.
对于命题(4)凸n边形对角线条数f(n)=
n(n-2)
2
,假设n=k时命题成立,即f(k)=
k(k-2)
2
,当n=k+1时有f(k+1)=f(k)+k=
k(k-2)
2
+k=
k2
2
(k+1)(k-1)
2
,故不满足条件.
故答案为(2)(3).
举一反三
下列命题是真命题的是(  )
A.“若x=0,则xy=0”的逆命题
B.“若x=0,则xy=0”的否命题
C.“若x>1,则x>2”的逆否命题
D.“若x=2,则(x-2)(x-1)=0”
题型:不详难度:| 查看答案
已知下列表述中
(1)侧面为梯形的几何体为台体;
(2)不共面的四点可确定四个平面;
(3)一条直线和一个点可确定一个平面;
(4)如果两个不重合的平面有一个公共点,那么这两个平面必有无数个公共点;
(5)垂直与同一条直线的两条直线互相平行;
(6)已知直线a与两平行平面中的一个平行,那么直线a与另一个平面也平行.
正确命题的序号是______.
题型:不详难度:| 查看答案
有下列四个命题:
(1)“若X+Y=0,则X,Y互为相反数”的逆命题;
(2)“全等三角形的面积相等”的否命题.
(3)“若q≤1,则x2+2x+q=0有实根”的逆否命题;
(4)“不等边的三角形的三个内角相等”的逆命题.
其中真命题的是______.
题型:不详难度:| 查看答案
下列命题中正确的序号为______(你认为正确的都写出来)
①y=
1
2
sin2x的周期为π,最大值为
1
2

②若x是第一象限的角,则y=sinx是增函数
③在△ABC中若sinA=sinB则A=B
α,β∈(0,
π
2
)
且cosα<sinβ则α+β>
π
2
题型:不详难度:| 查看答案
已知f(x)是定义域为R的函数,给出下列命题:
①若f′(1)=0,则x=1是f(x)的极值点;
②若1<a<3,则函数f(x)=





(3-a)x-3,x≤7
ax-6,x>7
是单调函数;
③若f(x)为奇函数,又f(x+1)为偶函数,则f(1)+f(3)+…+f(19)=f(2)+f(4)+…+f(20);
④若f(x)=xn+1(n∈N*),且f(x)在x=1处的切线与x轴交于点(xn,0),则lgx1+lgx2+…+lgx99=-2
其中正确命题的序号是______ (写出所有正确命题的序号).
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.