“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件
题型:不详难度:来源:
“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的( )A.充分而不必要条件 | B.必要而不充分条件 | C.充分必要条件 | D.既不充分也不必要条件 |
|
答案
A |
解析
当φ=π时,y=sin(2x+φ)=sin(2x+π)=-sin 2x,此时曲线y=sin(2x+φ)必过原点,但曲线y=sin(2x+φ)过原点时,φ可以取其他值,如φ=0.因此“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的充分而不必要条件. |
举一反三
重庆高考已知f(x)是定义在R上的偶函数,且以2为周期,则“f(x)为[0,1]上的增函数”是“f(x)为[3,4]上的减函数”的( )A.既不充分也不必要的条件 | B.充分而不必要的条件 | C.必要而不充分的条件 | D.充要条件 |
|
“”,“”,若是的充分不必要条件,则的取值范围是 . |
“”是“x>l"的( )A.充要条件 | B.必要非充分条件 | C.充分非必要条件 | D.既不充分也不必要条件 |
|
已知命题p、q,“为真”是“p为假”的( )A.充分不必要条件 | B.必要不充分条件 | C.充要条件 | D.既不充分也不必要条件 |
|
最新试题
热门考点