(Ⅰ)由题意:抛物线焦点为(1,0) 设l:x=ty+1代入抛物线y2=4x消去x得, y2-4ty-4=0,设A(x1,y1),B(x2,y2) 则y1+y2=4t,y1y2=-4 ∴•=x1x2+y1y2=(ty1+1)(ty2+1)+y1y2 =t2y1y2+t(y1+y2)+1+y1y2 =-4t2+4t2+1-4=-3.
(Ⅱ)设l:x=ty+b代入抛物线y2=4x,消去x得 y2-4ty-4b=0设A(x1,y1),B(x2,y2) 则y1+y2=4t,y1y2=-4b ∴•=x1x2+y1y2=(ty1+b)(ty2+b)+y1y2 =t2y1y2+bt(y1+y2)+b2+y1y2 =-4bt2+4bt2+b2-4b=b2-4b 令b2-4b=-4,∴b2-4b+4=0∴b=2. ∴直线l过定点(2,0). |