在正三角形ABC中,D是BC上的点.若AB=3,BD=1,则AB•AD=______.

在正三角形ABC中,D是BC上的点.若AB=3,BD=1,则AB•AD=______.

题型:上海难度:来源:
在正三角形ABC中,D是BC上的点.若AB=3,BD=1,则


AB


AD
=______.
答案
∵AB=3,BD=1,
∴D是BC上的三等分点,


AD
=


AB
+


BD
=


AB
+
1
3


BC



AB


AD
=


AB
• (


AB
+
1
3


BC
)

=


AB
2
+
1
3


AB


BC
=9-
1
3
×9×
1
2
=
15
2

故答案为
15
2
举一反三
已知△ABC中,


CB
=


a


CA
=


b


a


b
<0,S△ABC=
15
4
,|


a
|=3,|


b
|=5
,则


a


b
的夹角为______.
题型:不详难度:| 查看答案
在△ABC中有如下结论:“若点M为△ABC的重心,则


MA
+


MB
+


MC
=


0
”,设a,b,c分别为△ABC的内角A,B,C的对边,点M为△ABC的重心.如果


aMA
+


bMB
+


3
3


cMC
 =


0
,则内角A的大小为______.
题型:不详难度:| 查看答案
在平面直角坐标系中,O为坐标原点,已知两点A(2,1),B(-1,1),若点P满足


OP
=α•


OA
+β•


OB
,其中α,β∈R且2α22=
2
3
. 
1)求点P的轨迹C的方程.2)设D(0,2),过D的直线L与曲线C交于不同的两点M、N,且M点在D,N之间,设


DM


DN
,求λ的取值范围.
题型:不详难度:| 查看答案
已知向量


a
=(1,x),


b
=(2,1-x)的夹角为锐角,则实数x的取值范围为______.(用区间表示)
题型:不详难度:| 查看答案
△ABC内接于⊙O:x2+y2=1(O为坐标原点),且3


OA
+4


OB
+5


OC
=0

(1)求△AOC的面积;
(2)若


OA
=(1,0)


OC
=(cos(θ-
π
4
),sin(θ-
π
4
)),θ∈(-
4
,0)
,求sinθ.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.