如图,边长为1的正三角形所在平面与直角梯形所在平面垂直,且,,,,、分别是线段、的中点.(1)求证:平面平面;(2)求二面角的余弦值.

如图,边长为1的正三角形所在平面与直角梯形所在平面垂直,且,,,,、分别是线段、的中点.(1)求证:平面平面;(2)求二面角的余弦值.

题型:不详难度:来源:
如图,边长为1的正三角形所在平面与直角梯形所在平面垂直,且分别是线段的中点.

(1)求证:平面平面
(2)求二面角的余弦值.
答案
(1)详见解析;(2)
解析

试题分析:(1)由已知中F为CD的中点,易判断四边形ABCD为平行四边形,进而AF∥BC,同时EF∥SC,再由面面平行的判定定理,即可得到答案.(II)取AB的中点O,连接SO,以O为原点,建立如图所示的空间坐标系,分别求出平面SAC与平面ACF的法向量,代入向量夹角公式,即可求出二面角S-AC-F的大小..
(1)分别是的中点,.又,所以,……2分
四边形是平行四边形.的中点,.……3分
平面平面……5分
(2)取的中点,连接,则在正中,,又平面平面平面平面平面.…6分
于是可建立如图所示的空间直角坐标系

则有
.…7分
设平面的法向量为,由
,得.……9分平面的法向量为.10分
   …11分而二面角的大小为钝角,
二面角的余弦值为
举一反三
如下图,在三棱锥中,底面,点为以为直径的圆上任意一动点,且,点的中点,且交于点.
(1)求证:
(2)当时,求二面角的余弦值.

题型:不详难度:| 查看答案
如图,在三棱锥中,直线平面,且
,又点分别是线段的中点,且点是线段上的动点.
证明:直线平面
(2) 若,求二面角的平面角的余弦值.

题型:不详难度:| 查看答案
给出下列结论:①若 ,,则 ; ②若,则
;   ④为非零不共线,若
非零不共线,则垂直
其中正确的为(     )
A.②③B.①②④C.④⑤D.③④

题型:不详难度:| 查看答案
给出下列四个命题:
① 因为,所以
② 由两边同除,可得
③ 数列1,4,7,10,…,的一个通项公式是
④ 演绎推理是由一般到特殊的推理,类比推理是由特殊到特殊的推理.
其中正确命题的个数有(     )
A.1个B.2个C.3个D.4个

题型:不详难度:| 查看答案
已知棱长为1的正方体AC1,E、F分别是B1C1、C1D的中点.
(1)求点A1到平面的BDEF的距离;
(2)求直线A1D与平面BDEF所成的角.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.