设a,b,c是三个不共面的向量,现在从①a+b;②a-b;③a+c;④b+c;⑤a+b+c中选出使其与a,b构成空间的一个基底,则可以选择的向量为______.

设a,b,c是三个不共面的向量,现在从①a+b;②a-b;③a+c;④b+c;⑤a+b+c中选出使其与a,b构成空间的一个基底,则可以选择的向量为______.

题型:不详难度:来源:


a


b


c
是三个不共面的向量,现在从①


a
+


b
;②


a
-


b
;③


a
+


c
;④


b
+


c
;⑤


a
+


b
+


c
中选出使其与


a


b
构成空间的一个基底,则可以选择的向量为______.
答案
构成基底只要三向量不共面即可,这里只要含有向量


c
即可,故③④⑤都是可以选择的.
故答案为:③④⑤(答案不唯一,也可以有其它的选择)
举一反三
三棱锥P-ABC中,M为BC的中点,以


PA


PB


PC
为基底,则


AM
可表示为(  )
A.


AM
=


PA
-


PB
-


PC
B.


AM
=


PB
+


PC
-


PA
C.


AM
=


PA
-12


PB
-12


PC
D.


AM
= 12


PB
+12


PC
-


PA
题型:不详难度:| 查看答案
(理) 在长方体ABCD-A1B1C1D1中,以


AD1


DD1


D1C1
为基底表示


A1C
,其结果是(  )
A.


A1C
=


AD1
+


DD1
+


D1C1
B.


A1C
=


AD1
+


DD1
-


D1C1
C.


A1C
=


AD1
-2


DD1
+


D1C1
D.


A1C
=


AD1
+2


DD1
+


D 1C1
题型:不详难度:| 查看答案
在四棱锥P-ABCD中,底面ABCD是正方形,E为PD中点,若


PA
=


a


PB
=


b


PC
=


c
,则


BE
=______.魔方格
题型:不详难度:| 查看答案
若向量{


a


b


c
}
是空间的一个基底,则一定可以与向量


p
=2


a
+


b


q
=2


a
-


b
构成空间的另一个基底的向量是(  )
A.


a
B.


b
C.


c
D.


a
+


b
题型:不详难度:| 查看答案
三棱柱ABC-A1B1C1中,M、N分别是BB1、AC的中点,设


AB
=


a


AC
=


b


AA1
=


c
,则


NM
等于(  )
A.


a
+
1
2
(


c
-


b
)
B.
1
2
(


a
+


b
-


c
)
C.
1
2
(


a
+


c
)
D.
1
2
(


a


b
+


c
)
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.