三段论:“①只有船准时起航,才能准时到达目的港;②某艘船是准时到达目的港的;③所以这艘船是准时起航的”中小前提是(  )A.①B.②C.①②D.③

三段论:“①只有船准时起航,才能准时到达目的港;②某艘船是准时到达目的港的;③所以这艘船是准时起航的”中小前提是(  )A.①B.②C.①②D.③

题型:不详难度:来源:
三段论:“①只有船准时起航,才能准时到达目的港;②某艘船是准时到达目的港的;③所以这艘船是准时起航的”中小前提是(  )
A.①B.②C.①②D.③
答案
三段论“①只有船准时起航,才能准时到达目的港;
②某艘船是准时到达目的港的;
③所以这艘船是准时起航的”中,
我们易得大前提是①,小前提是②,结论是③.
故选B
举一反三
下表中的由平面到空间的三个类比推理正确的个数(  )
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:广东难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.

平面空间
三角形两边之和大于第三边三棱锥任意三个面的面积之和大于第四个面的面积
三角形的面积等于任意一边的长度与这边上高的乘积的一半三棱锥的体积等于任意一个面的面积与该面上的高的乘积的三分之一
三角形的面积等于其内切圆半径与三角形周长的乘积的一半三棱锥的体积等于其内切球半径与三棱锥表面积的乘积的一半
已知:x∈(0,+∞),观察下列式子:x+
1
x
≥2,x+
4
x2
=
x
2
+
x
2
+
4
x2
≥3…
类比有x+
a
xn
≥n+1(n∈N*)
,则a的值为(  )
A.nnB.nC.n2D.n+1
设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)>k2成立时,总可推出f(k+1)>(k+1)2成立”. 那么,下列命题总成立的是(  )
A.若f(1)≤1成立,则f(9)≤81成立
B.若f(2)≤4成立,则f(1)>1成立
C.若f(3)>9成立,则当k≥1时,均有f(k)>k2成立
D.若f(3)>9成立,则当k≥3时,均有f(k)>k2成立
观察下列各式:55=3 125,56=15 625,57=78 125,…,则52011的末四位数字为(  )
A.3 125B.5 625C.0 625D.8 125
如图是某汽车维修公司的维修点环形分布图.公司在年初分配给A,B,C,D四个维修点某种配件各50件.在使用前发现需将A,B,C,D四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行,那么要完成上述调整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为(  )
A.15B.16C.17D.18
魔方格