已知和相交于A、B两点,过A点作切线交于点E,连接EB并延长交于点C,直线CA交于点D,  (1)当点D与点A不重合时(如图1),证明:ED2=EB·EC;(2

已知和相交于A、B两点,过A点作切线交于点E,连接EB并延长交于点C,直线CA交于点D,  (1)当点D与点A不重合时(如图1),证明:ED2=EB·EC;(2

题型:不详难度:来源:
已知相交于A、B两点,过A点作切线交于点E,连接EB并延长交于点C,直线CA交于点D,
  
(1)当点D与点A不重合时(如图1),证明:ED2=EB·EC;
(2)当点D与点A重合时(如图2),若BC=2,BE=6,求的直径长.
答案
(1)证明详见解析;(2)
解析

试题分析:(1)连接AB,在EA的延长线上取点F,由弦切角定理可得∠FAC=∠ABC,而∠FAC=∠DAE,(对顶角)证得∠ABC=∠DAE,然后内接四边形的性质证得∠ABC=∠ADE,即得∠DAE=∠ADE.所以EAED,由切割线定理可得,即.
(2)直线CA与⊙O2只有一个公共点,所以直线CA与⊙O2相切,由弦切角定理知:然后证明,即ACAE分别为⊙O1和⊙O2的直径.最后根据切割线定理证得AE的长.
试题解析:(1)连接AB,在EA的延长线上取点F,如图①所示.
AE是⊙O1的切线,切点为A
∴∠FAC=∠ABC,.∵∠FAC=∠DAE
∴∠ABC=∠DAE,∵∠ABC是⊙O2内接四边形ABED的外角,
∴∠ABC=∠ADE,∴∠DAE=∠ADE.∴EAED,∵,∴

(2)当点D与点A重合时,直线CA与⊙O2只有一个公共点,
所以直线CA与⊙O2相切.如图②所示,由弦切角定理知:


ACAE分别为⊙O1和⊙O2的直径.    8分
∴由切割线定理知:EA2BE·CE,而CB=2,BE=6,CE=8
EA2=6×8=48,AE.故⊙O2的直径为.      10分
举一反三
如图,E是圆O内两弦AB和CD的交点,过AD延长线上一点F作圆O的切线FG,G为切点,已知EF=FG.

求证:(1);(2)EF//CB.
题型:不详难度:| 查看答案
如图:是⊙的直径,是弧的中点,,垂足为于点.

(1)求证:=;
(2)若=4,⊙的半径为6,求的长.
题型:不详难度:| 查看答案
如图,在△ABC中,∠C=90°,∠A=60°,过C作△ABC的外接圆的切线CD,BD⊥CD于D.BD与外接圆交于点E,已知DE=5,则△ABC的外接圆的半径为______.

题型:不详难度:| 查看答案
如图,△ABC中,DE∥BC,DF∥AC,AE∶AC=3∶5,DE=6,求BF的长.

题型:不详难度:| 查看答案
如图,在△ABC中,DE∥BC,DE分别与AB、AC相交于点D、E,若AD=4,DB=2,求DE与BC的长度比.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.