在平面直角坐标系xOy中,设圆C:(x-1)2+(y-2)2=1在矩阵A=k00k (k>0)对应的线性变换下得到曲线F所围图形的面积为4π,求k的值.

在平面直角坐标系xOy中,设圆C:(x-1)2+(y-2)2=1在矩阵A=k00k (k>0)对应的线性变换下得到曲线F所围图形的面积为4π,求k的值.

题型:不详难度:来源:
在平面直角坐标系xOy中,设圆C:(x-1)2+(y-2)2=1在矩阵A=



k0
0k



 (k>0)
对应的线性变换下得到曲线F所围图形的面积为4π,求k的值.
答案
设点P(x,y),则点P在矩阵A=



k0
0k



 (k>0)
对应的线性变换下得到P(x",y")
满足



x′ 
y′ 



=A



x 
y 



=



kx 
ky 



,得





x′=kx
y′=ky


因此若点P(x,y)在圆C:(x-1)2+(y-2)2=1上,则
点P"(x",y")满足(
x′
k
-1)2+(
y′
k
-2)2=1上,即(x"-k)2+(y"-2k)2=k2
对应以C"(k,2k)为圆心,半径为k的圆,
得πk2=4,解之得k=2.
举一反三
定义:在直角坐标系中,若不在一直线上的三点A、B、C的坐标分别为(x1,y1)、(x2,y2)、(x3,y3),则三角形ABC的面积可以表示为S△ABC=|
1
2
.
x1 y1  1
x2y2     1
x3y3    1
.
|
.已知抛物线y2=4x,过抛物线焦点F斜率为
4
3
的直线l与抛物线交于A、B两点.
(1)求A、B两点的坐标;
(2)若P(3,0),试用行列式计算三角形面积的方法求四边形APBO的面积S.
题型:不详难度:| 查看答案
选修4-2:矩阵与变换
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=



1
1



,并且M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
题型:江苏二模难度:| 查看答案
附 加 题:求矩阵A=



21
30



的特征值及对应的特征向量.
题型:不详难度:| 查看答案
已知二阶矩阵M满足:M



0
1



=



1
0



,M



1
2



=



2
1



,求M2
题型:不详难度:| 查看答案
形如





ab
cd





的式子叫做二行二列矩阵,定义矩阵的一种运算





ab
cd








x
y



=



ax+bx
cx+dy



.该运算的几何意义为平面上的点(x,y)在矩阵





ab
cd





的作用下变换成点(ax+by,cx+dy).
(1)设点M(-2,1)在





01
10





的作用下变换成点M′,求点M′的坐标;
(2)设数列{an} 的前n项和为Sn ,且对任意正整数n,点A(Sn,n)在





01
10





的作用下变换成的点A′在函数f(x)=x2+x的图象上,求an的表达式;
(3)在(2)的条件下,设bn为数列{1-
1
an
}的前n项的积,是否存在实数a使得不等式bn


an+1
<a
对一切n∈N*都成立?若存在,求a的取值范围;若不存在,请说明理由.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.