如图,某机场建在一个海湾的半岛上,飞机跑道AB的长为4.5km,且跑道所在的直线与海岸线l的夹角为60o(海岸线可以看作是直线),跑道上离海岸线距离最近的点B到

如图,某机场建在一个海湾的半岛上,飞机跑道AB的长为4.5km,且跑道所在的直线与海岸线l的夹角为60o(海岸线可以看作是直线),跑道上离海岸线距离最近的点B到

题型:不详难度:来源:
如图,某机场建在一个海湾的半岛上,飞机跑道AB的长为4.5km,且跑道所在的直线与海岸线l的夹角为60o(海岸线可以看作是直线),跑道上离海岸线距离最近的点B到海岸线的距离BC=4km.D为海湾一侧海岸线CT上的一点,设CD=x(km),点D对跑道AB的视角为q.
(1)将tanq表示为x的函数;
(2)求点D的位置,使q取得最大值.

答案
(1);(2)点距点6km.
解析

试题分析:(1)由图可知,因此为了求,可通过求,下面关键要求,为止作,垂足为,这时会发现随的取值不同,点可能在线段上,也可能在线段外,可能为锐角也可能为钝角,这里出现了分类讨论,作延长线于,由已知可求出,这就是分类的分界点;(2)由(1)求得,要求它的最大值,可以采取两种方法,一种是由于分子是一次,分母是二次的,可把分子作为整体,分子分母同时除以(当然分母也已经化为的多项式了),再用基本不等式求解,也可用导数知识求得最大值.
(1)过A分别作直线CD,BC的垂线,垂足分别为E,F.
由题知,AB=4.5,BC=4,∠ABF=90o-60o=30o
所以CE=AF=4.5×sin30o,BF=4.5×cos30o
AE=CF=BC+BF=
因为CD=x(x>0),所以tan∠BDC=
当x>时,ED=x-,tan∠ADC=(如图1);

当0<x<时,ED=-x,tan∠ADC=-(如图2).            4分
所以tanq=tan∠ADB=tan(∠ADC-∠BDC)=
,其中x>0且x≠
当x=时tanq=,符合上式.
所以tanq=( x>0)                                      8分
(2)(方法一)tanq==,x>0.      11分
因为4(x+4)+-41≥2-41=39,
当且仅当4(x+4)=,即x=6时取等号.
所以当x=6时,4(x+4)+-41取最小值39.
所以当x=6时,tanq取最大值.                                      13分
由于y=tanx在区间(0,)上是增函数,所以当x=6时,q取最大值.
答:在海湾一侧的海岸线CT上距C点6km处的D点处观看飞机跑道的视角最大  14分
(方法二)tanq=f(x)=
f ¢(x)==-,x>0.
由f ¢(x)=0得x=6.                                                      11分
当x∈(0,6)时,f ¢(x)>0,函数f(x)单调递增;当x∈(6,+∞)时,f ¢(x)<0,此时函数f(x)单调递减.
所以函数f(x)在x=6时取得极大值,也是最大值f(6)=.                    13分
由于y=tanx在区间(0,)上是增函数,所以当x=6时,q取最大值.
答:在海湾一侧的海岸线CT上距C点6km处的D点处观看飞机跑道的视角最大.  14分
举一反三
函数的值域是       
题型:不详难度:| 查看答案
已知函数,则使函数有零点的实数的取值范围是(  )
A.B.C.D.

题型:不详难度:| 查看答案
已知函数,若
,则(   )
A.2B.4C.8D.随值变化

题型:不详难度:| 查看答案
已知函数,若
,则=(   )
A.2B.4C.8D.随值变化

题型:不详难度:| 查看答案
如图,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为,雨速沿E移动方向的分速度为。E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与×S成正比,比例系数为;(2)其它面的淋雨量之和,其值为,记为E移动过程中的总淋雨量,当移动距离d=100,面积S=时。

(1)写出的表达式
(2)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度,使总淋雨量最少。
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.