已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律是:θ=m·2t+21-t(t≥0,且m>0).(1)如果m=2,求经过多少时间,物体的
题型:不详难度:来源:
已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律是:θ=m·2t+21-t(t≥0,且m>0). (1)如果m=2,求经过多少时间,物体的温度为5摄氏度. (2)若物体的温度总不低于2摄氏度,求m的取值范围. |
答案
(1) 经过1分钟,物体的温度为5摄氏度. (2) [,+∞) |
解析
(1)若m=2,则θ=2·2t+21-t=2(2t+), 当θ=5时,2t+=, 令2t=x(x≥1),则x+=,即2x2-5x+2=0, 解得x=2或x=(舍去),此时t=1, 所以经过1分钟,物体的温度为5摄氏度. (2)物体的温度总不低于2摄氏度,即θ≥2恒成立. 亦即m·2t+≥2恒成立. 亦即m≥2(-)恒成立. 令=a,则0<a≤1. ∴m≥2(a-a2),由于a-a2≤,∴m≥. 因此当物体的温度总不低于2摄氏度时,m的取值范围是[,+∞). |
举一反三
某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)=x2+10x(万元).当年产量不小于80千件时,C(x)=51x+-1450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. (1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式. (2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大? |
为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为 y= 且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,国家将给予补偿. (1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损? (2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低? |
某学校制定奖励条例,对在教育教学中取得优异成绩的教职工实行奖励,其中有一个奖励项目是针对学生高考成绩的高低对任课教师进行奖励的.奖励公式为f(n)=k(n)(n-10),n>10(其中n是任课教师所在班级学生的该任课教师所教学科的平均成绩与该科省平均分之差,f(n)的单位为元),而k(n)=现有甲、乙两位数学任课教师,甲所教的学生高考数学平均分超出省平均分18分,而乙所教的学生高考数学平均分超出省平均分21分,则乙所得奖励比甲所得奖励多( )A.600元 | B.900元 | C.1600元 | D.1700元 |
|
某投资公司投资甲、乙两个项目所获得的利润分别是P(亿元)和Q(亿元),它们与投资额t(亿元)的关系有经验公式P=,Q=t,今该公司将5亿元投资于这两个项目,其中对甲项目投资x(亿元),投资这两个项目所获得的总利润为y(亿元).求: (1)y关于x的函数表达式. (2)总利润的最大值. |
已知两函数f(x)=8x2+16x-k,g(x)=2x3+5x2+4x,其中k为实数. (1)对任意x∈[-3,3]都有f(x)≤g(x)成立,求k的取值范围. (2)存在x∈[-3,3]使f(x)≤g(x)成立,求k的取值范围. (3)对任意x1,x2∈[-3,3]都有f(x1)≤g(x2),求k的取值范围. |
最新试题
热门考点