一块形状为直角三角形的铁皮,两直角边长分别为40 cm、60 cm,现要将它剪成一个矩形,并以此三角形的直角为矩形的一个角,则矩形的最大面积是________c

一块形状为直角三角形的铁皮,两直角边长分别为40 cm、60 cm,现要将它剪成一个矩形,并以此三角形的直角为矩形的一个角,则矩形的最大面积是________c

题型:不详难度:来源:
一块形状为直角三角形的铁皮,两直角边长分别为40 cm、60 cm,现要将它剪成一个矩形,并以此三角形的直角为矩形的一个角,则矩形的最大面积是________cm2.
答案
600
解析
设直角边为40 cm和60 cm上的矩形边长分别为x cm、y cm,则,解得y=60-x.矩形的面积Sxyx=-(x-20)2+600,当x=20时矩形的面积最大,此时S=600.
举一反三
如图,线段EF的长度为1,端点EF在边长不小于1的正方形ABCD的四边上滑动,当EF沿着正方形的四边滑动一周时,EF的中点M所形成的轨迹为G,若G的周长为l,其围成的面积为S,则lS的最大值为________.

题型:不详难度:| 查看答案
如图,在C城周边已有两条公路l1l2在点O处交汇.已知OC=()km,∠AOB=75°,∠AOC=45°,现规划在公路l1l2上分别选择AB两处为交汇点(异于点O)直接修建一条公路通过C城.设OAx km,OBy km.

(1)求y关于x的函数关系式并指出它的定义域;
(2)试确定点AB的位置,使△OAB的面积最小.
题型:不详难度:| 查看答案
某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a元(3≤a≤5)的管理费,预计当每件产品的售价为x元(9≤x≤11)时,一年的销售量为(12-x)2万件.
(1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式;
(2)当每件产品的售价为多少元时,分公司一年的利润L最大?并求出L的最大值Q(a).
题型:不详难度:| 查看答案
已知函数f(x)=.
(1)若f(x)>k的解集为{x|x<-3,或x>-2},求k的值;
(2)对任意x>0,f(x)≤t恒成立,求t的取值范围.
题型:不详难度:| 查看答案
已知函数f(x)=x2bxc(bc∈R),对任意的x∈R,恒有f′(x)≤f(x).
(1)证明:当x≥0时,f(x)≤(xc)2
(2)若对满足题设条件的任意bc,不等式f(c)-f(b)≤M(c2b2)恒成立,求M的最小值.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.