建造一条防洪堤,其断面为等腰梯形,腰与底边成角为(如图),考虑到防洪堤坚固性及石块用料等因素,设计其断面面积为平方米,为了使堤的上面与两侧面的水泥用料最省,则断

建造一条防洪堤,其断面为等腰梯形,腰与底边成角为(如图),考虑到防洪堤坚固性及石块用料等因素,设计其断面面积为平方米,为了使堤的上面与两侧面的水泥用料最省,则断

题型:不详难度:来源:
建造一条防洪堤,其断面为等腰梯形,腰与底边成角为(如图),考虑到防洪堤坚固性及石块用料等因素,设计其断面面积为平方米,为了使堤的上面与两侧面的水泥用料最省,则断面的外周长(梯形的上底线段与两腰长的和)要最小.

(1)求外周长的最小值,并求外周长最小时防洪堤高h为多少米?
(2)如防洪堤的高限制在的范围内,外周长最小为多少米?
答案
(1)外周长的最小值为米,此时堤高米.
(2)(米).(当时取得最小值)
解析

试题分析:(1),AD=BC+2×=BC+
设外周长为,则
   
,即时等号成立.外周长的最小值为米,此时堤高米.
(2),则
,的增函数,
(米).(当时取得最小值)
点评:中档题,利用图象特征,确定得到周长的表达式,在进一步求函数最值过程中,可以应用导数,也可以运用均值定理,应用均值定理时,要注意“一正、二定、三相等”缺一不可。
举一反三
观察数表




1
2
3

4
1


3
5

1
4
2
3


 ( )
A.  3       B.  4       C.         D. 5
题型:不详难度:| 查看答案
(本小题满分12分)
已知甲、乙两个工厂在今年的1月份的利润都是6万,且乙厂在2月份的利润是8万元.若甲、乙两个工厂的利润(万元)与月份x之间的函数关系式分别符合下列函数模型:f(x)=a1x2—4x+6,g(x)=a2b2(a1a2b2∈R).
(1)求函数f(x)与g(x)的解析式;
(2)求甲、乙两个工厂今年5月份的利润;
(3)在同一直角坐标系下画出函数f(x)与g(x)的草图,并根据草图比较今年1—10月份甲、乙两个工厂的利润的大小情况.
题型:不详难度:| 查看答案
直线与函数的图象的交点个数是 (     )
A.0B.1C.0或1D.以上均不对

题型:不详难度:| 查看答案
定义运算:,则函数的值域为(  )
A.B.C.D.

题型:不详难度:| 查看答案
(本题满分12分)生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.
(Ⅰ)设生物体死亡时体内每克组织中的碳14的含量为1,根据上述规律,写出生物体内碳14的含量与死亡年数之间的函数关系式;
(Ⅱ)湖南长沙马王堆汉墓女尸出土时碳14的残余量约占原始含量的76.7℅,试推算马王堆汉墓的年代.(精确到个位;辅助数据:
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.