如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:(1)最初到达离家最远的地方是什么时间?离家

如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:(1)最初到达离家最远的地方是什么时间?离家

题型:不详难度:来源:
如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:

(1)最初到达离家最远的地方是什么时间?离家多远?
(2)何时开始第一次休息?休息多长时间?
(3)第一次休息时,离家多远?
(4)11:00到12:00他骑了多少千米?
(5)他在9:00~10:00和10:00~10:30的平均速度分别是多少?
(6)他在哪段时间里停止前进并休息用午餐?
答案
(1) 12时        30千米;
(2) 10:30               半小时;
(3) 17千米;
(4) 13千米;
(5) 10千米/时             14千米/时;
(6) 12时到13时
解析
解:(1)最初到达离家最远的地方的时间是12时,离家30千米.
(2)10:30开始第一次休息,休息了半小时.
(3)第一次休息时,离家17千米.
(4)11:00至12:00他骑了13千米.
(5)9:00~10:00的平均速度是10千米/时;10:00~10:30的平均速度是14千米/时.
(6)从12时到13时停止前进,并休息用午餐较为符合实际情形.
点评:判断一幅图象是不是函数图象,关键是看对给定的定义域内的任意一个x是否都有唯一确定的函数值y与之对应.若存在一个x对应两个或两个以上y的情况,就不是函数图象.函数图象是数形结合的基础.
举一反三
如图,某灌溉渠的横断面是等腰梯形,底宽为2 m,渠深为1.8 m,边坡的倾斜角是45°.

(1)试将横断面中水的面积A(m2)表示成水深h(m)的函数;
(2)确定函数的定义域和值域;
(3)画出函数的图象.
题型:不详难度:| 查看答案
是定义在R上的偶函数,且,当 则  
A.B.C.D.

题型:不详难度:| 查看答案
定义新运算:当时,;当时, ,则函数的最大值等于(   )
A.-1B.1C.6D.12

题型:不详难度:| 查看答案
对于定义域为的函数,如果同时满足以下三条:①对任意的,总有;②;③若,都有成立,则称函数为理想函数.
(1) 若函数为理想函数,求的值;
(2)判断函数是否为理想函数,并予以证明;
(3) 若函数为理想函数,假定,使得,且,求证:
题型:不详难度:| 查看答案
下列各组函数中,表示同一函数的是(   )
A.B.
C.D.

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.