错解(a+)2+(b+)2=a2+b2+++4≥2ab++4≥4+4=8, ∴(a+)2+(b+)2的最小值是8. 分析上面的解答中,两次用到了基本不等式a2+b2≥2ab,第一次等号成立的条件是a=b=,第二次等号成立的条件是ab=,显然,这两个条件是不能同时成立的。因此,8不是最小值。 事实上,原式= a2+b2+++4="(" a2+b2)+(+)+4=[(a+b)2-2ab]+[(+)2-]+4= (1-2ab)(1+)+4, 由ab≤()2= 得:1-2ab≥1-=, 且≥16,1+≥17, ∴原式≥×17+4= (当且仅当a=b=时,等号成立), ∴(a + )2 + (b + )2的最小值是。 |