用数学归纳法证明

用数学归纳法证明

题型:不详难度:来源:
用数学归纳法证明
答案
见解析.
解析
证:当n=1时,左边=-14,右边=-1·2·7=-14,等式成立
假设当n=k时等式成立,即有

那么 当n=k+1时,

这就是说,当n=k+1时等式也成立
根据以上论证可知等式对任何都成立
举一反三
用数学归纳法证明
题型:不详难度:| 查看答案
已知是定义域为正整数集的函数,对于定义域内任意的,若 成立,则成立,下列命题成立的是
A.若成立,则对于任意,均有成立;
B.若成立,则对于任意的,均有成立;
C.若成立,则对于任意的,均有成立;
D.若成立,则对于任意的,均有成立。

题型:不详难度:| 查看答案
(湖北理21)(本小题满分14分)
已知mn为正整数.
(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx
(Ⅱ)对于n≥6,已知,求证m=1,1,2…,n
(Ⅲ)求出满足等式3n+4m+…+(n+2)m=(n+3)n的所有正整数n.
题型:不详难度:| 查看答案
某个命题与正整数有关,若时该命题成立,那么可推得时该命题也成立,现已知时,该命题不成立,则可以推得(   )
A 时该命题成立                             B 时该命题不成立
C 时该命题成立                             D 时该命题不成立
题型:不详难度:| 查看答案
某个命题与正整数有关,若时该命题成立,那么可推得时该命题也成立,现在已知当时该命题不成立,那么可推得            
A.当时,该命题不成立B.当时,该命题成立
C.当时,该命题不成立D.当时,该命题成立

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.