已知:a,b∈R+,n>1,n∈N*,求证:an+bn2≥(a+b2)n.

已知:a,b∈R+,n>1,n∈N*,求证:an+bn2≥(a+b2)n.

题型:不详难度:来源:
已知:a,b∈R+,n>1,n∈N*,求证:
an+bn
2
≥(
a+b
2
)n
答案
证明:(1)当n=2时,左边-右边=
a2+b2
2
-(
a+b
2
)2=(
a-b
2
)2≥0
,不等式成立.(2分)
(2)假设当n=k(k∈N*,k>1)时,不等式成立,即
ak+bk
2
≥(
a+b
2
)k
.(4分)
因为a>0,b>0,k>1,k∈N*
所以(ak+1+bk+1)-(akb+abk)=(ak-bk)(a-b)≥0,于是ak+1+bk+1≥akb+abk.(6分)
当n=k+1时,(
a+b
2
)k+1=(
a+b
2
)k
a+b
2
ak+1+bk+1
2
a+b
2
=
ak+1+bk+1+akb+abk
4

ak+1+bk+1+ak+1+bk+1
4
=
ak+1+bk+1
2

即当n=k+1时,不等式也成立.(9分)
综合(1),(2)知,对于a,b∈R+,n>1,n∈N*,不等式
an+bn
2
≥(
a+b
2
)n
总成立(11分).
举一反三
由下列式子 1>
1
2

1+
1
2
+
1
3
>1

1+
1
2
+
1
3
+
1
4
+
1
5
+
1
6
+
1
7
3
2

1+
1
2
+
1
3
+…+
1
15
>2


猜想第n个表达式,并用数学归纳法给予证明.
题型:不详难度:| 查看答案
已知正项数列{an}中,a1=1,an+1=1+
an
1+an
(n∈N*)
.用数学归纳法证明:anan+1(n∈N*)
题型:不详难度:| 查看答案
用数学归纳法证明:1+
1
22
+
1
32
+…+
1
(2n-1)2
<2-
1
2n-1
(n≥2)
(n∈N*)时第一步需要证明(  )
A.1<2-
1
2-1
B.1+
1
22
<2-
1
22-1
C.1+
1
22
+
1
32
<2-
1
22-1
D.1+
1
22
+
1
32
+
1
42
<2-
1
22-1
题型:不详难度:| 查看答案
求证:32n+2-8n-9(n∈N*)能被64整除.
题型:不详难度:| 查看答案
求证:(1+x)n+(1-x)n<2n,其中|x|<1,n≥2,n∈N.
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.