用数学归纳法证明“(n+1)(n+2)…(n+n)=2n•1•2•…•(2n-1)”(n∈N+)时,从“n=k到n=k+1”时,左边应增添的式子是______.
题型:不详难度:来源:
用数学归纳法证明“(n+1)(n+2)…(n+n)=2n•1•2•…•(2n-1)”(n∈N+)时,从“n=k到n=k+1”时,左边应增添的式子是______. |
答案
当n=k时,左边等于 (k+1)(k+2)…(k+k)=(k+1)(k+2)…(2k), 当n=k+1时,左边等于 (k+2)(k+3)…(k+k)(2k+1)(2k+2), 故从“k”到“k+1”的证明,左边需增添的代数式是 =2(2k+1), 故答案为:2(2k+1). |
举一反三
用数学归纳法证明:+++…+> (n∈N,n≥1) |
设f(n)=nn+1,g(n)=(n+1)n,n∈N*. (1)当n=1,2,3,4时,比较f(n)与g(n)的大小. (2)根据(1)的结果猜测一个一般性结论,并加以证明. |
在数列{an}中,a1=2,an+1=λan+λn+1+(2-λ)2n(n∈N+).(Ⅰ)求a2,a3,a4,并猜想数列{an}的通项公式(不必证明);(Ⅱ)证明:当λ≠0时,数列{an}不是等比数列;(Ⅲ)当λ=1时,试比较an与n2+1的大小,证明你的结论. |
各项都为正数的数列{an},满足a1=1,an+12-an2=2. (Ⅰ)求数列{an}的通项公式; (Ⅱ)证明++…+≤对一切n∈N+恒成立. |
已知x1>0,x1≠1,且xn+1=,(n=1,2,…).试证:数列{xn}或者对任意自然数n都满足xn<xn+1,或者对任意自然数n都满足xn>xn+1. |
最新试题
热门考点