用数学归纳法证明“(n+1)(n+2)…(n+n)=2n•1•2•…•(2n-1)”(n∈N+)时,从“n=k到n=k+1”时,左边应增添的式子是______.

用数学归纳法证明“(n+1)(n+2)…(n+n)=2n•1•2•…•(2n-1)”(n∈N+)时,从“n=k到n=k+1”时,左边应增添的式子是______.

题型:不详难度:来源:
用数学归纳法证明“(n+1)(n+2)…(n+n)=2n•1•2•…•(2n-1)”(n∈N+)时,从“n=k到n=k+1”时,左边应增添的式子是______.
答案
当n=k时,左边等于 (k+1)(k+2)…(k+k)=(k+1)(k+2)…(2k),
当n=k+1时,左边等于 (k+2)(k+3)…(k+k)(2k+1)(2k+2),
故从“k”到“k+1”的证明,左边需增添的代数式是
(2k+1)(2k+2)
(k+1)
=2(2k+1),
故答案为:2(2k+1).
举一反三
用数学归纳法证明:
1
n+1
+
1
n+2
+
1
n+3
+…+
1
n+n
11
24
  (n∈N,n≥1)
题型:不详难度:| 查看答案
设f(n)=nn+1,g(n)=(n+1)n,n∈N*
(1)当n=1,2,3,4时,比较f(n)与g(n)的大小.
(2)根据(1)的结果猜测一个一般性结论,并加以证明.
题型:不详难度:| 查看答案
在数列{an}中,a1=2,an+1=λann+1+(2-λ)2n(n∈N+).(Ⅰ)求a2,a3,a4,并猜想数列{an}的通项公式(不必证明);(Ⅱ)证明:当λ≠0时,数列{an}不是等比数列;(Ⅲ)当λ=1时,试比较an与n2+1的大小,证明你的结论.
题型:不详难度:| 查看答案
各项都为正数的数列{an},满足a1=1,an+12-an2=2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明
1
a1
+
1
a2
+…+
1
an


2n-1
对一切n∈N+恒成立.
题型:石家庄二模难度:| 查看答案
已知x1>0,x1≠1,且xn+1=
xn(
x2n
+3)
3
x2n
+1
,(n=1,2,…).试证:数列{xn}或者对任意自然数n都满足xn<xn+1,或者对任意自然数n都满足xn>xn+1
题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.