万有引力的发现实现了物理学史上的第一次大统一——“地上物理学”和“天上物理学”的统一.它表明天体运动和地面上物体的运动遵循相同的规律.牛顿在发现万有引力定律的过

万有引力的发现实现了物理学史上的第一次大统一——“地上物理学”和“天上物理学”的统一.它表明天体运动和地面上物体的运动遵循相同的规律.牛顿在发现万有引力定律的过

题型:不详难度:来源:
万有引力的发现实现了物理学史上的第一次大统一——“地上物理学”和“天上物理学”的统一.它表明天体运动和地面上物体的运动遵循相同的规律.牛顿在发现万有引力定律的过程中,将行星的椭圆轨道简化为圆轨道,还应用了其他的规律和结论.下面的规律和结论被使用到的有
A.开普勒行星运动定律B.卡文迪许通过扭秤实验测出的引力常量
C.牛顿第二定律D.牛顿第三定律

答案
ACD
解析
考点:
分析:在开普勒对行星运动所总结的规律的基础上,把行星的运动理想化,看成匀速圆周运动.根据匀速圆周运动的条件得出太阳对行星存在着引力,由牛顿运动定律结合圆周运动知识推导出太阳对行星的引力跟行星的质量成正比,跟行星到太阳的距离成反比,再由引力作用的相互性得出引力的大小也与太阳的质量成正比,写成公式,然后对该规律进行讨论,推广到一般物体间也同样存在相互作用的引力,且遵守同样的规律--万有引力定律.
解答:解:万有引力定律的推导过程:
我们已经学习了行星的运动,开普勒指出所有的行星围绕太阳的运动轨道都是椭圆,太阳处在所有的椭圆的一个焦点上,所以行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等,事实上,行星运动的椭圆轨道离心率很接近于1,我们把它理想化成一个圆形轨道,即认为行星绕太阳作匀速圆周运动.根据圆周运动的条件可知行星必然受到了一个太阳的力.牛顿认为这是太阳对行星的引力,那么,太阳对行星的引力F应为行星运动所受的向心力,即:F=mR 再根据开普勒行星运动定律=k得:F=m,其中m为行星的质量,R为行星轨道半径,即太阳与行星的距离.也就是说,太阳对行星的引力正比于行星的质量而反比于太阳与行星的距离的平方.即:F∝根据牛顿第三定律,既然太阳对行星的引力与行星的质量成正比,那么行星对太阳也有作用力,也应与太阳的质量M成正比,即:
F∝,所以得到F∝,用文字叙述为:太阳与行星之间的引力,与它们质量的乘积成正比,与它们的距离的平方成反比.这就是牛顿的万有引力定律.用公式表述为:F=G其中G是一个常数,叫做万有引力恒量.
故选ACD.
点评:我们自己能够推导万有引力定律,了解其中运用的物理规律.
举一反三
(12分)已知地球的半径为R,地球表面的重力加速度大小为g,万有引力常量为G,不考虑地球自转的影响.试求:
(1)卫星环绕地球运行的第一宇宙速度的大小;
(2)若卫星绕地球做匀速圆周运动且运行周期为T,求卫星运行的轨道半径r;
(3)由题干所给条件,推导出地球平均密度的表达式.
题型:不详难度:| 查看答案
设“嫦娥1号”探月卫星的轨道是圆形的,且贴近月球表面.已知月球的质量约为地球质量的1/81,月球的半径约为地球半径的1/4,地球上的第一宇宙速度约为7.9 km/s,则该探月卫星绕月运行的速率约为 (     )
A.0.4 km/sB.1.8 km/sC.11 km/s D.36 km/s

题型:不详难度:| 查看答案
如图,飞船在离地球表面h 高处的轨道上做周期为T的匀速圆周运动,已知地球的半径R,则飞船在该轨道上(   )
A.运行的线速度大于第一宇宙速度
B.运行的线速度大小为
C.运行时的向心加速度大小为
D.地球表面的重力加速度大小可表示为

题型:不详难度:| 查看答案
历史上第一次通过实验比较准确测出万有引力常量的科学家是   (   )
A.爱因斯坦B.牛顿C.伽利略D.卡文迪许

题型:不详难度:| 查看答案
亚洲一号是我国发射的地球同步通讯卫星,设地球自转的角速度恒定,则关于亚洲一号说法正确的是
A.运行周期是一天
B.沿着一与赤道平面成一定角度的轨道运行
C.运行的轨道半径是一确定值
D.如果需要,可以定点在我国首都北京的上空

题型:不详难度:| 查看答案
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.