已知双曲线x^2-(y^2)/2=1的焦点为F1、F2,点M在双曲线上且向量MF1点乘向量MF2=0
题目
已知双曲线x^2-(y^2)/2=1的焦点为F1、F2,点M在双曲线上且向量MF1点乘向量MF2=0
答案
C^2=a^2+b^2=1+2=3 c^2=3向量MF1点乘向量MF2=0,就是向量MF1点乘向量MF2垂直,M点就是以F1,F2为直径的圆与x^2-y^2/2=1的交点:圆心:(0,0) 半径平方=c^2=3圆为x^2+y^2=3 x^2=3-y^2与x^2-y^2/2=1的交点:3-y^2-y^2/2=...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点