已知实数x、y满足方程x^2+y^2-4x+1=0.求y/x的最大值和最小值
题目
已知实数x、y满足方程x^2+y^2-4x+1=0.求y/x的最大值和最小值
还有如果以后遇到这样的题向哪方面想?
答案
原方程可化为:
(x-2)²+y²=3
这是圆心在(2,0)半径等于√3的圆,满足该方程的点P(x,y)在圆上,并且y/x为直线OP的斜率.
显然,当OP与圆相切,并且位于第一象限时,其斜率最大.
令OP的方程为 y=kx,代入原方程得
(1+k²)x²-4x+1=0
令判别式 △=16-4(1+k²)=0
解出k得:k=±√3
最后得到:y/x的最大值为√3,最小值为-√3
注意到已知方程的图形是圆,用数形结合的思想就可以很快找出解题方向.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点