在四棱锥P-ABCD中,底面ABCD是正方形,AB=PD=a,PA=PC=2a. (Ⅰ)求证:PD⊥平面ABCD; (Ⅱ)求异面直线PB与AC所成的角; (Ⅲ)求二面角A-PB-D的大小.
题目
在四棱锥P-ABCD中,底面ABCD是正方形,AB=PD=a,PA=PC=
a.
(Ⅰ)求证:PD⊥平面ABCD;
(Ⅱ)求异面直线PB与AC所成的角;
(Ⅲ)求二面角A-PB-D的大小.
答案
(1)PC=
a,PD=DC=a,∴△PDC是Rt△,且PD⊥DC,
同理PD⊥AD,又AD∩DC=D,∴PD⊥平面ABCD.
(2)连BD,因ABCD是正方形,∴BD⊥AC,又PD⊥平面ABCD.
BD是PB在面ABCD上的射影,由三垂线定理得PB⊥AC,∴PB与AC成90°角.
(3)设AC∩BD=O,作AE⊥PB于E,连OE,
∵AC⊥BD,又PD⊥平面ABCD,AC⊂平面ABCD,∴PD⊥AC,
又PD∩BD=D,∴AC⊥平面PDB,则OE是AE在平面PDB上的射影.
由三垂线定理逆定理知OE⊥PB,∴∠AEO是二面角A-PB-D的平面角.
又AB=a,PA=
a,PB=
a,∵PD⊥平面ABCD,DA⊥AB,
∴PA⊥AB,在Rt△PAB中,AE•PB=PA•AB.∴AE=
a,又AO=
a∴sinAEO=
,∠AEO=60°,二面角A-PB-D的大小为60°.
(1)通过计算证明AD⊥PD.PD⊥CD.然后利用线面垂直的判定可证证明PD⊥平面ABCD
(2)连BD,因ABCD是正方形,根据BD⊥AC,PD⊥平面ABCD.由三垂线定理得PB⊥AC,从而可求PB与AC所成的角.
(3)取AP中点E,过E作EF⊥PB,垂足为F,∠DFE为所求,通过解三角形求出∠DFE=60°.
与二面角有关的立体几何综合题;异面直线及其所成的角;直线与平面垂直的判定.
本题以四棱锥为载体,考查空间线面关系、二面角的度量等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力,是中档题.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 计算 180x乘3分之1=120(30-x)乘2分之1
- 四(1)班分成三组投篮,第一组10人,共投中28个,第二组11人,每人投中三个,第三组9人,共投中23个.全班平均每人投中多少个?
- 函数F(x)=x-ae^x-1如题
- 3,7,17,41,99(?)A,239 B,238 C,237 D,236答案及原理?
- 已知菱形ABCD的周长是16cm,∠BAD:∠ABC=2:1,求对角线AC的长
- 计算76000除以100有100个0乘以200有98个0
- past的中文是什么意思
- teacher的中文
- 已知关于x的一元二次x2+(2k-3)x+k2=0的两个实数根x1,x2且x1+x2=x1x2,求k的值.
- 小明家住六楼,他从底楼走到二楼用1分钟,那么他从底楼走到六楼要6分钟.对错?