三角形ABC的外接圆圆心为O,半径为2,向量OA+AB+AC=0,且OA=AB,CA在CB方向上投影为多少

三角形ABC的外接圆圆心为O,半径为2,向量OA+AB+AC=0,且OA=AB,CA在CB方向上投影为多少

题目
三角形ABC的外接圆圆心为O,半径为2,向量OA+AB+AC=0,且OA=AB,CA在CB方向上投影为多少
答案
因为OA=AB,所以OAB构成等边三角形,AB=OA=OB=2;
因 向量OA+AB+AC=向量OB+AC=0,故知 AC与OB平行且大小相等,即AC=OB=2;
OAC也构成等边三角形,ABOC形成一个锐角是60的菱形;
AC在CB上的投影等于BC长度的一半,大小等于2*cos30°=√3;
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.