求用数学归纳法证明:对于大于2的一切正整数n,下列不等式都成立

求用数学归纳法证明:对于大于2的一切正整数n,下列不等式都成立

题目
求用数学归纳法证明:对于大于2的一切正整数n,下列不等式都成立
(1+2+3+…+n)(1+1/2+1/3+…+1/n)大于等于n的平方+n-1
答案
首先n=1容易验证成立
假设n=k成立 n=k+1时 有
(1+2+3+…+k)(1+1/2+1/3+…+1/k)+(k+1)*(1+1/2+1/3+…+1/k)+(1+2+3+…+k)*(1/(k+1)
(1+1/2+1/3+…+1/k)*(k+1)>2k+2
(1+2+3+…+k)*(1/(k+1)=k/2>0
(1+2+3+…+k)(1+1/2+1/3+…+1/k)>k^2+k-1
加一起..n=k+1成立
OK
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.