【高中反证法】自然数4n+2不能表示为两个自然数的平方差
题目
【高中反证法】自然数4n+2不能表示为两个自然数的平方差
答案
显然哇,证明如下,反正自然数4n+2能表示为两个自然数的平方差,此处n为自然数咯,则4n+2=a2-b2=(a+b)(a-b)而由于左式为偶,a+b与a-b又本来是同奇同偶,故a+b与a-b同偶,其乘积a2-b2=(a+b)(a-b)为4的倍数,而4n+2仅仅为2的倍数(或者除4余2),产生矛盾.毕
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点