设P为椭圆x^2/a^2+y^2/b^2=1上一点,F1,F2为焦点,如果∠PF1F2=75°,∠PF2F1=15°,则离心率为?

设P为椭圆x^2/a^2+y^2/b^2=1上一点,F1,F2为焦点,如果∠PF1F2=75°,∠PF2F1=15°,则离心率为?

题目
设P为椭圆x^2/a^2+y^2/b^2=1上一点,F1,F2为焦点,如果∠PF1F2=75°,∠PF2F1=15°,则离心率为?
设PF1为m,PF2为n
因为角P=90°
所以m平方+n平方=(2c)平方
所以(m+n)平方-2mn=4c平方
(2a)平方-2*(2c*c/2)=4c平方 ※
所以4a平方-2c平方=4c平方
所以4a平方=6c平方
所以e=c/a=根号6/3
标※ 那一步中的 2(2c*c/2) 从何而来
答案
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.