设P为双曲线x²-y²/12=1上的一点,F1,F2为焦点,角F1PF2=π/2,则P到x轴的距离

设P为双曲线x²-y²/12=1上的一点,F1,F2为焦点,角F1PF2=π/2,则P到x轴的距离

题目
设P为双曲线x²-y²/12=1上的一点,F1,F2为焦点,角F1PF2=π/2,则P到x轴的距离
答案
设:PF1=m、PF2=n,则:
(1)m²+n²=(2c)²=52
(2)|m-n|=2a=2,则:m²-2mn+n²=4
两式相减,得:
2mn=48
mn=24
则三角形PF1F2的面积是:S=(1/2)mn=12
又:S=(1/2)×(2c)×h=ch=√13h,则:
h=12/√13
即点P到x轴的距离是d=h=12/√13
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.