设f(x)是定义在(0,+∞)上的增函数,且f(xy)=f(x)+f(y),若f(3)=1且f(a)>f(a-1)+2,求实数a的取值范围.
题目
设f(x)是定义在(0,+∞)上的增函数,且f(xy)=f(x)+f(y),若f(3)=1且f(a)>f(a-1)+2,求实数a的取值范围.
答案
∵f(3)=1,∴f(9)=2f(3)=2,∴f(a-1)+2=f(a-1)+f(9)=f(9a-9),
∵f(a)>f(a-1)+2,∴f(a)>f(9a-9).
∵f(x)是定义在(0,+∞)上的增函数,∴a>9a-9>0,解得
1<a<.
故实数a的取值范围是
(1,).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点