5cos(2x-y)+7cosy=0 ,tan(x-y)tanx=?
题目
5cos(2x-y)+7cosy=0 ,tan(x-y)tanx=?
y=sin²(x+π/4)-sin²(x-π/4),x∈(π/6,π/3)值域
答案
答:
1)
5cos(2x-y)+7cosy=0
5cos[(x-y)+x]+7cos[x-(x-y)]=0
5cos(x-y)cosx-5sin(x-y)sinx +7cosxcos(x-y)+7sinxsin(x-y)=0
所以:
12cos(x-y)cosx+2sin(x-y)sinx=0
所以:sin(x-y)sinx=-6cos(x-y)cosx
所以:tan(x-y)tanx=-6
2)
y=sin²(x+π/4)-sin²(x-π/4),x∈(π/6,π/3)值域
=(1/2)*[1-cos(2x+π/2) ]- (1/2)*[1-cos(2x-π/2)]
=(1/2) * [cos(2x-π/2)-cos(2x+π/2) ]
=(1/2)* (sin2x+sin2x)
=sin2x
π/6
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点