已知三角形ABC的面积为3,且满足0≤向量AB·向量AC≤6,设向量AB、AC的夹角为θ

已知三角形ABC的面积为3,且满足0≤向量AB·向量AC≤6,设向量AB、AC的夹角为θ

题目
已知三角形ABC的面积为3,且满足0≤向量AB·向量AC≤6,设向量AB、AC的夹角为θ
1.求θ的取值范围
2.求函数ƒ(θ)=2sin^2(π/4+θ)-√3cos2θ的最大值和最小值
答案
1.因为三角形ABC的面积=(ABXAC)sinθ/2=3
ABXACsinθ=6 -->sinθ=6/ABXAC .(1)
而0≤向量AB·向量AC≤6 也就是
0≤ABxACcosθ≤6 --->0≤cosθ≤6/ABxAC .(2)
(1)代入(2)
0≤cosθ≤sinθ
所以 π/4 ≤ θ ≤ π/2
2.
因π/4 ≤ θ ≤ π/2
cos2θ≤0
当θ=π/4
ƒ(θ)=2sin^2(π/4+θ)-√3cos2θ=2
为最小值
当θ=π/2
ƒ(θ)=2sin^2(π/4+θ)-√3cos2θ=1+√3
为最大值
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.