已知四棱锥p-abcd中,底面abcd为菱形pa⊥平面abcd,∠abc=60度,e,f分别是bc,pc的中点
题目
已知四棱锥p-abcd中,底面abcd为菱形pa⊥平面abcd,∠abc=60度,e,f分别是bc,pc的中点
若H为PD上的动点,EH与平面PAD所成最大角的正切值为2分之根号6,求2面角E-AF-C的余弦值
答案
\x0d
\x0d\x0d\x0d在PAD平面,过A作AH'垂直PC于H'.连接AE、AH'、EH'\x0d提示:\x0d棱形∠ABC=60.所以EA⊥AC.设棱形边为a,则:AE=√3*a/2.\x0d又∵PA⊥ABCD.∴PA⊥EA\x0d∴EA⊥面PAC\x0d∴EA⊥PC\x0d又∵AH⊥PC,∴PC⊥面AEH',∴PC⊥EH'\x0d∠EH'A为EH与平面PAD所成最大角.\x0dAEH'为直角三角形.\x0dtan[∠EH'A]=AE/AH'=(√3*a/2)/AH'=√6/2\x0d所以AH'=√2a/2\x0d所以∠ADH'=45度.则PA=a=AC.\x0d则:AF⊥FC.\x0d\x0dAF=√2a/2\x0dEF=√2a/2\x0dAE=√3a/2\x0dAEF为等腰三角形.\x0d过E作EG垂直于AF,过G作GK垂直AF,交AC于K.\x0d求得EG=√30a/8\x0dAG=3√2a/8\x0dGK‖FC,AF=FC\x0d所以GK=AG=3√2a/8\x0dAK=AG*√2=3a/4\x0dCK=AC-AK=a/4\x0d角ECK=60度.恰好CK=EC/2\x0d所以EK⊥KC.而EK⊥PA,所以EK⊥平面AGK\x0d\x0d所以三角形EGK是直角三角形.\x0dcos[EGK]=GK/GE\x0d=(3√2a/8)/(√30a/8)\x0d=√15/5
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 已知等差数列{an}的公差d≠0,由{an}中的部分项组成的数列
- She ______ ______(死于) cancer .
- 如图,正方形ABCD内部有若干个点,用这些点以及正方形ABCD的顶点A、B、C、D把,原正方形分割成一些三角形(互相不重叠): (1)填写下表: 正方形ABCD内点的个数 1 2 3 4 … n 分割
- 因此相要,
- 怎样证明氯化铁溶液中深黄色是[FeCl6]3-而不是不是水合铁离子的颜色
- 停车场的小汽车数量是大货车的3倍,如果停车场一共有小汽车和大货车452辆,大货车有多少辆?(求祥细解法,)
- 七大洲五大洋分别是?
- 若x1,x2(x1 <x2)是方程(x -a)(x-b) = 1(a < b)的两个根,则实数x1,x2,a,b的大小
- 解方程:x³=1/3
- 建筑工地上用的混凝土是把水泥、黄沙、石子按2:3:5的比配置而成的.(1)要配置120吨这样的混