向量a=(2cosx,-sinx)向量b=(cosα,2sinα),若α=π/4,函数f(x)=向量a点积向量b+t的最大值为2,

向量a=(2cosx,-sinx)向量b=(cosα,2sinα),若α=π/4,函数f(x)=向量a点积向量b+t的最大值为2,

题目
向量a=(2cosx,-sinx)向量b=(cosα,2sinα),若α=π/4,函数f(x)=向量a点积向量b+t的最大值为2,
求t的值,并求出函数f(x)在[0,π]上的对称轴.
答案
f(x)=a·b+t=2cosxcosπ/4-sinx·2sinπ/4+t=2cos﹙x+π/4﹚+t
∵函数f(x)最大值为2,
∴t=0
函数f(x)的对称轴:
x+π/4=kπ,k∈Z
即x=kπ-π/4,k∈Z
∴k=1时,函数f(x)在[0,π]上的对称轴是x=3π/4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.