(sinx+cosx)^(1/x)极限问题

(sinx+cosx)^(1/x)极限问题

题目
(sinx+cosx)^(1/x)极限问题
(sinx+cosx)^(1/x)在x趋于0时的极限怎么求?
不要用洛必达法则.
答案
(sinx+cosx)^(1/x)=[√2sin(x+π/4)]^(1/x)
={1+[√2sin(x+π/4)-1]}^(1/x)
令t=√2sin(x+π/4)-1,当x趋于0时,t趋于0
所以原式=(1+t)^(1/t)=e,
(sinx+cosx)^(1/x)在x趋于0时的极限转化成(1+t)^(1/t)在t趋于0时的极限,所以极限为e
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.