求函数fx=根号下3-2cosx-2sinx+根号下2+2cosx的最小值
题目
求函数fx=根号下3-2cosx-2sinx+根号下2+2cosx的最小值
答案
f(x)=根号下[(1-cosx)^2+(1-sinx)^2]+根号下[(0-sinx)^2+(-1-cosx)^2]
这样写后求函数最小值等价于求单位圆上一点到(1,1)点和(-1,0)点距离之和的最小值.
由于两点连线与单位圆相交,其最短距离即为两点间距离,为根号五.
所以f(x)最小值为根号五
主要考察数形结合
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点