在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=根号2a,则 A a>b 请证明.

在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=根号2a,则 A a>b 请证明.

题目
在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=根号2a,则 A a>b 请证明.
答案
由余弦定理及条件得
2a²=c² =a²+b²-2abcos120°=a²+b²+ab,
即a²=b²+ab>b²,所以a>b.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.