证明函数f(x)=x+1/x在(0,1】上是单调递增的
题目
证明函数f(x)=x+1/x在(0,1】上是单调递增的
是递减
答案
证明:设0则
f(x1)-f(x2)=
x1+1/x1-x2-1/x2
=(x1-x2)-(x1-x2)/x1x2
=(x1-x2)(1-1/x1x2)
0则x1-x2<0
01
则1-1/x1x2<0
则(x1-x2)(1-1/x1x2)>0
则f(x1)-f(x2)>0
则f(x)在(0,1】上是单调递减的
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点