计算二重积分∫∫sin(x^2+y^2)dxdy,其中D:x^2+y^2≤4

计算二重积分∫∫sin(x^2+y^2)dxdy,其中D:x^2+y^2≤4

题目
计算二重积分∫∫sin(x^2+y^2)dxdy,其中D:x^2+y^2≤4
答案
我不能传图片- -||
用换元法:x=r*cos(a);y=r*sin(a)
∫∫sin(x^2+y^2)dxdy=∫∫r*sin(r^2)drda;其中r的积分限为:[0,2],a的积分限为:[0,2pai],接下来=2pai*∫r*sin(r^2)dr=pai*∫sin(r^2)d(r^2),令t=r^2,然后=pai*∫sin(t)dt,其中积分限要变成[0,4]
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.