在空间四边形ABCD中,E、F分别是AD、BC的中点,若AC=BD=a,EF=22a,∠BDC=90°.求证:BD⊥平面ACD.
题目
在空间四边形ABCD中,E、F分别是AD、BC的中点,若AC=BD=a,EF=
a,∠BDC=90°.求证:BD⊥平面ACD.
答案
证明:作DC的中点G,连接EG,FG,
则EG=
AC=
,GF=
BD=
,
∴EG
2+GF
2=EF
2,
∴EF⊥FG,
∵EG∥AC,FG∥BD,
∴BD⊥AC,
∵BD⊥DC,DC⊂平面ACD,AC⊂平面ACD,AC∪CD=C,
∴BD⊥平面ACD.
作BC的中点G,连接EG,FG,先证明出EG⊥GF,进而证明出BD⊥AC,最后根据线面垂直的判定定理证明出BD⊥平面ACD.
直线与平面垂直的判定.
本题主要考查了线面垂直的判定定理的应用.证明的关键是找到两条相交的与之垂直的直线.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点