证明:若a1>a2>……>an,则1^2/(a1-a2)+2^2/(a2-a3)+……+(n-1)^2/(an-1-an)+n^2/(an-a1)大于等于0

证明:若a1>a2>……>an,则1^2/(a1-a2)+2^2/(a2-a3)+……+(n-1)^2/(an-1-an)+n^2/(an-a1)大于等于0

题目
证明:若a1>a2>……>an,则1^2/(a1-a2)+2^2/(a2-a3)+……+(n-1)^2/(an-1-an)+n^2/(an-a1)大于等于0
答案
若n=2
左边=1/(a1-a2)+4/(a2-a1)=3
1^2/(a1-a2)+2^2/(a2-a3)+……+(n-1)^2/(an-1-an)+n^2/(an-a1)>=0
即证1^2/(a1-a2)+2^2/(a2-a3)+……+(n-1)^2/(an-1-an)>=n^2/(a1-an)
由柯西不等式
(a1-a2+a2-a3+...+an-1-an)[1^2/(a1-a2)+2^2/(a2-a3)+……+(n-1)^2/(an-1-an)]>=(1+2+..+n-1)^2
即1^2/(a1-a2)+2^2/(a2-a3)+……+(n-1)^2/(an-1-an)>=(n(n-1)/2)^2/(a1-an)
(n(n-1))^2/[4(a1-an)]>=(2^2*n^2)/[4(a1-an)]=n^2/(a1-an)
所以1^2/(a1-a2)+2^2/(a2-a3)+……+(n-1)^2/(an-1-an)>=n^2/(a1-an)
原不等式得证
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.