已知x=13/(4+根号3),求(x^4-6x^3-2x^2+18x+23)/(x^2-8x+15) 的值
题目
已知x=13/(4+根号3),求(x^4-6x^3-2x^2+18x+23)/(x^2-8x+15) 的值
禁止复制粘贴:
x=13/(4+√3)=4-√3
√3=4-x
3=x²-8x+16
x^2-8x+13=0,
所以x^2-8x+15=2;
x^4-6x^3-2x^2+18x+23
=x^2(x^2-8x+13)+2x^3-15x^2+18x+23
=2x(x^2-8x+13)+x^2-8x+23
=x^2-8x+23
=x^2-8x+13+10=10
所以:(x^4-6x^3-2x^2+18x+23)/(x^2-8x+15)=10/2=5
答案
x^4-6x^3-2x^2+18x+23
=x^2(x^2-8x+13)+2x^3-15x^2+18x+23
=2x(x^2-8x+13)+x^2-8x+23
=x^2-8x+23
x^4-6x^3-2x^2+18x+23
=x^4-8x^3+2x^3+13x^2-15x^2+18x+23
=x^4-8x^3+13x^2+2x^3-15x^2+18x+23
=x^2(x^2-8x+13)+2x^3-15x^2+18x+23
=x^2*(0)+2x^3-15x^2+18x+23
=2x^3-15x^2+18x+23
=2x^3-16x^2+x^2+26x-8x+23
=2x^3-16x^2+26x+x^2-8x+23
=2x(x^2-8x+13)+x^2-8x+23
=2x*(0)+x^2-8x+23
=x^2-8x+23
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点