设A是n×m矩阵,B是m×n矩阵,其中n<m,I是n阶单位矩阵,若AB=I,证明B的列向量组线性无关.

设A是n×m矩阵,B是m×n矩阵,其中n<m,I是n阶单位矩阵,若AB=I,证明B的列向量组线性无关.

题目
设A是n×m矩阵,B是m×n矩阵,其中n<m,I是n阶单位矩阵,若AB=I,证明B的列向量组线性无关.
答案
证明:设B1,B2,…,Bn为B的列向量组,假设存在k1,k2,…,Kn,使得k1B1+k2B2+…+knBn=0,则:A(k1B1+k2B2+…+knBn)=0,即:k1AB1+k2AB2+…+knABn=0.①因为AB=I,所以:ABj=0⋮0j0⋮0=ej,(j=1,…,n)代入①...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.