已知sinx+cosx=1/5 求2sinx*cosx+2sin²x/1-tanx
题目
已知sinx+cosx=1/5 求2sinx*cosx+2sin²x/1-tanx
答案
已知sinx+cosx=1/5
sin^2x+2sinxcosx+cos^2x=1/25
2sinxcosx=-24/25
sin^2x-2sinxcosx+cos^2x=1/25-4sinxcosx
(sinx-cosx)^2=1/25-2*(-24/25)
(cosx-sinx)^2=49/25
x在第四象限,cosx>sinx
cosx-sinx=7/5
2sinx*cosx+2sin²x/1-tanx
=[2sinx(cosx+sinx)]/[(1-sinx/cosx)]
=[2sinxcosx(cosx+sinx)]/(cosx-sinx)
=[-24/25*1/5]/(7/5)
=-24/175
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点