已知数列{an}中的前n项和为Sn=-3n^2+6n,数列{bn}满足bn=(1/2)^n-1,数列满足Cn=1/6an*bn,求{an}
题目
已知数列{an}中的前n项和为Sn=-3n^2+6n,数列{bn}满足bn=(1/2)^n-1,数列满足Cn=1/6an*bn,求{an}
已知数列{an}中的前n项和为Sn=-3n^2+6n,数列{bn}满足bn=(1/2)^n-1,数列{cn}满足Cn=1/6an*bn,求{an}的通项公式,求{cn}的前几项和Tn
答案
当n=1时,a1=S1=-3×1²+6×1=3,
当n≥2时,
an=Sn-S
=(-3n²+6n)-[-3(n-1)²+6(n-1)]
=-3n²+6n+3n²-6n+9-6n+6
=9-6n,
an=9-6n满足a1=3,
则{an}的通项公式:an=9-6n.
cn=1/6×(1/2)^(n-1)×(9-6n)=(3-2n)/2^n.
Tn=1/2^1+(-1)/2^2+(-3)/2^3+...+(5-2n)/2^(n-1)+(3-2n)/2^n,
有2Tn=1+(-1)/2^1+(-3)/2^2+(-5)/2^3+...+(3-2n)/2^(n-1).
两式相减【2Tn-Tn】可得:
Tn=1+1/2^1×(-1-1)+1/2^2×[-3-(-1)]+1/2^3×[-5-(-3)]+...+1/2^(n-1)×[(3-2n)-(5-2n)]-(3-2n)/2^n
=1-2×[1/2^1+1/2^2+1/2^3+,..+1/2^(n-1)]-(3-2n)/2^n
=1-2×1/2[1-(1/2)^(n-1)]/(1-1/2)-(3-2n)/2^n
=1-2×[1-(1/2)^(n-1)]-(3-2n)/2^n
=[(2n+1)/2^n]-1,
即Tn=[(2n+1)/2^n]-1.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 在做财务管理题时,往往不知是用现值还是终值
- 当暖气团与冷气团势均力敌时所形成的锋是什么
- (线段CB在上,平行OA)已知,如图,在直角梯形COAB中,CB‖OA,以O为原点建立平面直角坐标系,A、B、C的坐标分别为A(10,0)、B(4,8)、C(0,8),D为OA的中点,动点P自A点出发
- 工程队15天完成工程,平均每天完成工程的几分之几,7天可以完成工程的几分之几?
- 求一根原木的材积
- 已知关于x的二次多项式a(x^3-2bx^2+3x)+b(2ax^2+x)+x^3-5,当x=2时值为-17,求当x=-2时,该多项式的值
- 描写人物神态,人物品质的成语(各五个)
- 我老板说,how come you are so brown now,
- 他们需要我们的关怀 用英语怎么说?
- P、Q是抛物线C:y=x2上的两动点,直线l1、l2分别是C在点P、点Q处的切线,l1∩l2=M,l1⊥l2,(1)求证:点M的纵坐
热门考点