在四棱锥O-ABCD中,底面ABCD为菱形,OA⊥平面ABCD,E为OA的中点,F为BC的中点,求证: (1)平面BDO⊥平面ACO; (2)EF∥平面OCD.

在四棱锥O-ABCD中,底面ABCD为菱形,OA⊥平面ABCD,E为OA的中点,F为BC的中点,求证: (1)平面BDO⊥平面ACO; (2)EF∥平面OCD.

题目
在四棱锥O-ABCD中,底面ABCD为菱形,OA⊥平面ABCD,E为OA的中点,F为BC的中点,求证:

(1)平面BDO⊥平面ACO;
(2)EF∥平面OCD.
答案
证明:(1)∵OA⊥平面ABCD,BD⊂平面ABCD,所以OA⊥BD,
∵ABCD是菱形,∴AC⊥BD,又OA∩AC=A,
∴BD⊥平面OAC,
又∵BD⊂平面OBD,∴平面BD0⊥平面ACO.
(2)取OD中点M,连接KM、CM,则ME∥AD,ME=
1
2
AD

∵ABCD是菱形,∴AD∥BC,AD=BC,
∵F为BC的中点,∴CF∥AD,CF=
1
2
AD

∴ME∥CF,ME=CF.
∴四边形EFCM是平行四边形,∴EF∥CM,
∴EF∥平面OCD
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.