求定积分下限∫-π/2到上限π/2sinx/(2+cosx)dx
题目
求定积分下限∫-π/2到上限π/2sinx/(2+cosx)dx
答案
原式=-∫-π/2到上限π/2dcosx/(2+cosx)
=-∫-π/2到上限π/2d(2+cosx)/(2+cosx)
=-ln(2+cosx)-π/2到上限π/2
=-[ln(2+0)-ln(2-0)]
=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点