已知函数f(x)=x2(ax+b)(a,b∈R)在x=2时有极值,其图象在点(1,f(1))处的切线与直线3x+y=0平行. (I)求a、b的值; (Ⅱ)求函数f(x)的单调区间.

已知函数f(x)=x2(ax+b)(a,b∈R)在x=2时有极值,其图象在点(1,f(1))处的切线与直线3x+y=0平行. (I)求a、b的值; (Ⅱ)求函数f(x)的单调区间.

题目
已知函数f(x)=x2(ax+b)(a,b∈R)在x=2时有极值,其图象在点(1,f(1))处的切线与直线3x+y=0平行.
(I)求a、b的值;
(Ⅱ)求函数f(x)的单调区间.
答案
(I)∵f (x )=x2 (ax+b )=ax3+bx2
∴f'(x )=3ax2+2bx,
∵函数f (x )在x=2时有极值,
∴f'(2 )=0,即 12a+4b=0,①
∵函数f (x )的图象在点(1,f (1 ))处的切线与直线3x+y=0平行.
∴f'(1 )=-3,即3a+2b=-3,②
由①②解得,a=1,b=-3.
经验证满足题意,∴a=1,b=-3.
(II)f'(x )=3x2-6x=3x (x-2),令3x (x-2)>0,
解得:x<0或x>2,
令3x (x-2)<0,解得:0<x<2.
∴函数f (x )的单调递增区间为(-∞,0)和(2,+∞),单调递减区间为(0,2).
(I)利用函数取得极值的必要条件和导数的几何意义可得f′(2)=0,f′(1)=-3,解出a,b并验证即可;
(II)分别解出f′(x)>0和f′(x)<0即可得出其单调区间.

利用导数研究函数的极值;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.

熟练掌握利用导数研究函数的单调性、极值及其几何意义等是解题的关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.