求一个分数的当n趋向于无穷大时的极限,分母是n!的1/n次方,分母是n.
题目
求一个分数的当n趋向于无穷大时的极限,分母是n!的1/n次方,分母是n.
答案
这个问题比较难,可分为三个步骤来完成:1、设xn=[n!^(1/n)]/n,则㏑xn=㏑{[n!^(1/n)]/n}=(1/n)㏑[n!/n^n]=(1/n)[㏑1/n+㏑2/n+…+㏑n/n]=(1/n)∑(k=1,n)㏑k/n(可以理解为积分和)2、转化为定积分:=∫(0,1)lnxdx=[xlnx-...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点