a,b,c,d为正实数,求证a/(b+d+2c)+b/(a+c+2d)+c/(d+b+2a)+d/(a+c+2b)>=1
题目
a,b,c,d为正实数,求证a/(b+d+2c)+b/(a+c+2d)+c/(d+b+2a)+d/(a+c+2b)>=1
急!
答案
由柯西不等式有a/(b+d+2c)+b/(a+c+2d)+c/(d+b+2a)+d/(a+c+2b)>=(1+1+1+1)*{(a+b+c+d)/[(b+d+2c)+(a+c+2d)+(d+b+2a)+(a+c+2b)]}=4*1/4=1
得证
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点