b,c均为正实数,且b2=ac,求证a4+b4+c4>(a2-b2+c2)2

b,c均为正实数,且b2=ac,求证a4+b4+c4>(a2-b2+c2)2

题目
b,c均为正实数,且b2=ac,求证a4+b4+c4>(a2-b2+c2)2
答案
由(a-c)²≥0得:
a²+c²-2ac≥0;
a²+c²-ac≥ac;
a,b,c均为正实数;即:a²+c²-ac>0.
(a²-b²+c²)²
=(a²-b²)²+c⁴+2c²(a²-b²)
=a⁴+b⁴-2a²b²+c⁴+2c²a²-2c²b²
=a⁴+b⁴-2a²ac+c⁴+2c²a²-2c²ac (把b²=ac代入得)
=a⁴+b⁴+c⁴-2a²ac+2c²a²-2c²ac
=a⁴+b⁴+c⁴-2ac(a²+c²-ac)
因为a,b,c均为正实数;
所以:2ac(a²+c²-ac)为正实数;
所以a⁴+b⁴+c⁴ > a⁴+b⁴+c⁴-2ac(a²+c²-ac)
即证:a⁴+b⁴+c⁴ >(a²-b²+c²)².
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.