设A={x|x^2-px-2=0},B={x|x^2+qx+r=0},A∪B={-2,-1,1},A∩B={-2},求实数p,q,r的值

设A={x|x^2-px-2=0},B={x|x^2+qx+r=0},A∪B={-2,-1,1},A∩B={-2},求实数p,q,r的值

题目
设A={x|x^2-px-2=0},B={x|x^2+qx+r=0},A∪B={-2,-1,1},A∩B={-2},求实数p,q,r的值
答案
A∩B={-2}
-2∈A
则 4+2p-2=0
∴ p=-1
x²+x-2=0
(x+2)(x-1)=0
x=-2或x=1
即 A={x|x^2-px-2=0}={1,-2}
∵ A∪B={-2,-1,1},A∩B={-2}
B最多两个元素
∴ B={-2,-1}
即x²+qx+r=0的两个根是-2,-1
利用韦达定理-q=-2+(-1),r=-2*(-1)
∴ q=3,r=2
综上p=-1,q=3,r=2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.